01) if x=ylog(xy), then dy/dx is equal to:
(a) x + y
x(1 + logxy)
(b) x - y
x(1+logxy)
(c) x + y
x(logx + logy)
(d) x - y
x(logx + logy)
02) The slope of the tangent at the point
(2,-2)to the curve x^2 + xy + y^2 - 4=0
is given by:
(a) 0
(b) 1
(c)-1
(d) none
03) if x^y = y^x, then dy/dx gives:
(a) x (x logy - y)
y (y logx - x)
(b) x (y logx - x)
y (x logy - y)
(c) y (x logy - y)
x (y logx - x)
(d) none of these
04)∫ 8x^2 dx is equal to:
(x^3 + 2)^3(a) -4/3(x^3 + 2)^2 +C
(b) -4/3(x^3 + 2)^-2 + C
(c) 4/3(x^3 + 2)^2 + C
(d) none of these
05) Given x=2t+5;y=t^2 - 2, then dy/dx
is calculated as:
(a) t
(b) 1/t
(c) -1/t
(d) none
No comments:
Post a Comment